Bayesian Optimal Experimental Design Framework for Data-Driven Uncertainty Quantification (UQ) in Dynamical Systems

Costas Papadimitriou

University of Thessaly, Greece

<u>Acknowledgements:</u> This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 764547.

Outline

Bayesian Learning Framework for Data-Driven UQ

Bayesian Optimal Experimental Design

Applications in Structural Dynamics

Conclusions

Models in Structural Dynamics

Models in Structural Dynamics

- Equations of motion in structural dynamics
 - Linear or nonlinear (elastic, plastic, sliding, impact, etc)
 - Loads known or unknown
- PARAMETERS
 - Stiffness, restoring force models, mass, boundary conditions, damping, friction)
 - Spectral characteristics of unknown loads

Data-Driven Modeling and UQ

Optimal Experimental Design Goal

Optimal Experimental Design is used to select the "best" experimental setup out of many alternative ones.

"Best" is the one that yields most informative measurements for

- Selecting models and inferring model parameters
- Estimating output QoI (e.g. response reconstruction, stresses)

Design Variables

- Type, location and number (density) of sensors and/or actuators
- Excitation characteristics (e.g. frequency content, amplitude)

A. PARAMETER ESTIMATION

PosteriorLikelihoodPrior $p(\theta \mid y) = \frac{p(y \mid \theta) \quad \pi(\theta)}{p(y)}$ p(y)Evidence

Prediction Error Model

$$y = q(\theta) + e$$
$$e = e^{e} + e^{m} \sim N(0, \Sigma)$$

Likelihood

$$p(y \mid \theta) = \frac{|\Sigma(\theta)|^{-1/2}}{(2\pi)^n} \exp\left[-\frac{1}{2}[y - q(\theta)]^T \Sigma^{-1}(\theta)[y - q(\theta)]\right]$$

$$p(z \mid y) = \int p(z \mid \theta) p(\theta \mid y) d\theta$$

$$y = q(\theta) + e$$
$$e = e^{e} + e^{m} \sim N(0, \Sigma)$$

Likelihood

$$p(y|\theta) = \frac{|\Sigma(\theta)|^{-1/2}}{(2\pi)^n} \exp\left[-\frac{1}{2}[y-q(\theta)]^T \Sigma^{-1}(\theta)[y-q(\theta)]\right]$$

$$p(z \mid y) = \int p(z \mid \theta) p(\theta \mid y) d\theta$$

$$y = q(\theta) + e$$
$$e = e^{e} + e^{m} \sim N(0, \Sigma)$$

Likelihood

$$p(y|\theta) = \frac{|\Sigma(\theta)|^{-1/2}}{(2\pi)^n} \exp\left[-\frac{1}{2}[y-q(\theta)]^T \Sigma^{-1}(\theta)[y-q(\theta)]\right]$$

$$p(z \mid y) = \int p(z \mid \theta) p(\theta \mid y) d\theta$$

$$y = q(\theta) + e$$
$$e = e^{e} + e^{m} \sim N(0, \Sigma)$$

Likelihood

$$p(y|\theta) = \frac{|\Sigma(\theta)|^{-1/2}}{(2\pi)^n} \exp\left[-\frac{1}{2}[y-q(\theta)]^T \Sigma^{-1}(\theta)[y-q(\theta)]\right]$$

$$p(z \mid y) = \int p(z \mid \theta) p(\theta \mid y) d\theta$$

$$y = q(\theta) + e$$
$$e = e^{e} + e^{m} \sim N(0, \Sigma)$$

Likelihood

$$p(y \mid \theta) = \frac{|\Sigma(\theta)|^{-1/2}}{(2\pi)^n} \exp\left[-\frac{1}{2}[y - q(\theta)]^T \Sigma^{-1}(\theta)[y - q(\theta)]\right]$$

$$p(z \mid y) = \int p(z \mid \theta) p(\theta \mid y) d\theta$$

Bayesian Optimal Experimental Design (OED)

- <u>Bayesian Learning</u>: Formulate posterior PDF of model parameters and/or posterior PDF of QoI given the data
- The Kullback-Leibler Divergence (KL-div), a scalar measure of the "distance" between the posterior and prior, is used to represent the information gain due to data.
- The objective of the experiment is to maximize the KL-div with respect to the design variables of the experiment.

• KL-div

$$U_{y}\left(\boldsymbol{\delta}, \boldsymbol{y}, \boldsymbol{\varphi}\right) = \int_{\boldsymbol{\Theta}} p\left(\boldsymbol{\theta} \mid \boldsymbol{y}, \boldsymbol{\delta}, \boldsymbol{\varphi}\right) \ln \left[\frac{p\left(\boldsymbol{\theta} \mid \boldsymbol{y}, \boldsymbol{\delta}, \boldsymbol{\varphi}\right)}{p\left(\boldsymbol{\theta}\right)}\right] d\boldsymbol{\theta}$$

Bayesian Optimal Experimental Design (OED)

- <u>Bayesian Learning</u>: Formulate posterior PDF of model parameters and/or posterior PDF of QoI given the data
- The Kullback-Leibler Divergence (KL-div), a scalar measure of the "distance" between the posterior and prior, is used to represent the information gain due to data.
- The objective of the experiment is to maximize the KL-div with respect to the design variables of the experiment.
- Need the data in order to compute KL-div. Data are not available before the experiment.
- Average the KL-div over all possible data, based on the likelihood & prior PDF of the model.

• Expected KL-div
$$\begin{aligned} y &= q(\theta \,|\, \mathsf{M}) + e \\ e &\sim N(0, \Sigma) \end{aligned}$$

$$U(\boldsymbol{\delta},\boldsymbol{\varphi}) = \iint_{\boldsymbol{Y}\,\Theta} p(\boldsymbol{\theta} \mid \boldsymbol{y},\boldsymbol{\delta},\boldsymbol{\varphi}) \ln\left[\frac{p(\boldsymbol{\theta} \mid \boldsymbol{y},\boldsymbol{\delta},\boldsymbol{\varphi})}{p(\boldsymbol{\theta})}\right] d\boldsymbol{\theta} p(\boldsymbol{y} \mid \boldsymbol{\delta}) d\boldsymbol{y}$$

Bayesian Optimal Experimental Design (OED)

- <u>Bayesian Learning</u>: Formulate posterior PDF of model parameters and/or posterior PDF of QoI given the data
- The Kullback-Leibler Divergence (KL-div), a scalar measure of the "distance" between the posterior and prior, is used to represent the information gain due to data.
- The objective of the experiment is to maximize the KL-div with respect to the design variables of the experiment.
- Need the data in order to compute KL-div. Data are not available before the experiment.
- Average the KL-div over all possible data, based on the likelihood & prior PDF of the model.

• Expected KL-div

$$U(\boldsymbol{\delta},\boldsymbol{\varphi}) = \iint_{\boldsymbol{Y}\,\boldsymbol{\Theta}} p(\boldsymbol{\theta} \mid \boldsymbol{y},\boldsymbol{\delta},\boldsymbol{\varphi}) \ln\left[\frac{p(\boldsymbol{\theta} \mid \boldsymbol{y},\boldsymbol{\delta},\boldsymbol{\varphi})}{p(\boldsymbol{\theta})}\right] d\boldsymbol{\theta} p(\boldsymbol{y} \mid \boldsymbol{\delta}) d\boldsymbol{y}$$

- Computation of Multi-Dimensional Integrals
 - Sampling algorithms (nested sampling) Huan & Marzouk, J. of Computational Physics, 2013
 - Asymptotic approximation

• REFORMULATE utility as a function of the design variables:

$$-U(\boldsymbol{\delta},\boldsymbol{\varphi}) \sim \int_{\boldsymbol{\Theta}} \overline{H}(\boldsymbol{\theta},\boldsymbol{\varphi},\boldsymbol{\delta}) \ \pi(\boldsymbol{\theta}) \ d\boldsymbol{\theta}$$

Expected posterior entropy

$$\overline{H}(\theta, \boldsymbol{\varphi}, \boldsymbol{\delta}) = \int_{\Upsilon} H(y, \boldsymbol{\varphi}, \boldsymbol{\delta}) p(y \mid \theta, \boldsymbol{\varphi}, \boldsymbol{\delta}) dy$$

Posterior entropy averaged over data for specific parameters

$$H(y, \boldsymbol{\varphi}, \boldsymbol{\delta}) = -\int_{\Theta} p(\boldsymbol{\theta} \mid y, \boldsymbol{\varphi}, \boldsymbol{\delta}) \ln p(\boldsymbol{\theta} \mid y, \boldsymbol{\varphi}, \boldsymbol{\delta}) d\boldsymbol{\theta}$$

Posterior entropy for specific data set

- Asymptotic approximation
 - Large number of data ~ Normal posterior distribution
 - Small prediction error ~ Laplace type approximation of integral on Y
- Integration
 - Sparse grid
 - Monte Carlo (use same samples for different values of the design variables)

$$-U(\boldsymbol{\delta},\boldsymbol{\varphi}) \approx \sum_{j=1}^{n} w_{j} H(q(\boldsymbol{\theta}^{(j)},\boldsymbol{\varphi},\boldsymbol{\delta}))$$

Inverse of Prior Covariance

• Information entropy

$$H(q(\theta, \varphi, \delta)) = \frac{1}{2} N_{\theta} \ln(2\pi) - \frac{1}{2} \ln \det[\hat{Q}(\theta, \varphi, \delta) + Q_{\pi}(\theta)]$$

Fisher Information Matrix

 $\hat{Q}(\theta, \boldsymbol{\varphi}, \boldsymbol{\delta}) = \nabla_{\theta} q^{T}(\theta; \boldsymbol{\varphi}, \boldsymbol{\delta}) \Sigma^{-1}(\boldsymbol{\sigma}) \nabla_{\theta}^{T} q(\theta; \boldsymbol{\varphi}, \boldsymbol{\delta})$

 Result is same as one in [Papadimitriou, Beck & Au 2000], based on the concept of robust information entropy for optimal experimental design

Papadimitriou, Beck & Au, Journal of Vibration and Control, 2000 Papadimitriou & Papadimitriou, International Journal for Uncertainty Quantification, 2015 Papadimitriou, Lombaert, Mechanical Systems and Signal Processing, 28, 105-127, 2012 Argyris, Ph.D. Thesis, University of Thessaly, 2017

$$-U(\boldsymbol{\delta},\boldsymbol{\varphi}) \approx \sum_{j=1}^{n} w_{j} H(q(\boldsymbol{\theta}^{(j)},\boldsymbol{\varphi},\boldsymbol{\delta}))$$

Inverse of Prior Covariance

• Information entropy

$$H(q(\theta, \varphi, \delta)) = \frac{1}{2} N_{\theta} \ln(2\pi) - \frac{1}{2} \ln \det[\hat{Q}(\theta, \varphi, \delta) + Q_{\pi}(\theta)]$$

Fisher Information Matrix

 $\hat{Q}(\theta, \boldsymbol{\varphi}, \boldsymbol{\delta}) = \nabla_{\theta} q^{T}(\theta; \boldsymbol{\varphi}, \boldsymbol{\delta}) \Sigma^{-1}(\boldsymbol{\sigma}) \nabla_{\theta}^{T} q(\theta; \boldsymbol{\varphi}, \boldsymbol{\delta})$

 Result is same as one in [Papadimitriou, Beck & Au 2000], based on the concept of robust information entropy for optimal experimental design

Papadimitriou, Beck & Au, Journal of Vibration and Control, 2000 Papadimitriou & Papadimitriou, International Journal for Uncertainty Quantification, 2015 Papadimitriou, Lombaert, Mechanical Systems and Signal Processing, 28, 105-127, 2012 Argyris, Ph.D. Thesis, University of Thessaly, 2017

Spatial correlation avoids sensor clustering

$$\Sigma_{ij} = \sigma_1^2 \delta_{ij} + \sigma_2^2 q_i q_j R(\Delta_{ij})$$

$$R(\Delta_{ij}) = \exp\left[-\frac{|x_i - x_j|}{\lambda}\right]$$

Papadimitriou, Lombaert, Mechanical Systems and Signal Processing, 28, 105-127, 2012

Robust Bayesian OED

- Bayesian Learning: Formulate posterior PDF of model parameters and/or posterior PDF of QoI given the data
- The Kullback-Leibler Divergence (KL-div), a scalar measure of the "distance" between the posterior and prior, is used to represent the information gain due to data.
- The objective of the experiment is to maximize the KL-div with respect to the design variables of the experiment.
- Need the data in order to compute KL-div. Data are not available before the experiment.
- Average the KL-div over all possible data, based on the likelihood & prior PDF of the model.
- Robust measure of Expected KL-div:

$$U(\boldsymbol{\delta}) = \iint_{\Phi Y Z} p(\boldsymbol{\theta} \mid \boldsymbol{y}, \boldsymbol{\delta}, \boldsymbol{\varphi}) \ln \left[\frac{p(\boldsymbol{\theta} \mid \boldsymbol{y}, \boldsymbol{\delta}, \boldsymbol{\varphi})}{p(\boldsymbol{\theta})} \right] d\boldsymbol{\theta} p(\boldsymbol{y} \mid \boldsymbol{\delta}) d\boldsymbol{y} \pi(\boldsymbol{\varphi}) d\boldsymbol{\varphi}$$

Asymptotic Approximation

$$-U(\boldsymbol{\delta}) \approx \sum_{j=1}^{n} w_j \ H(q(\boldsymbol{\theta}^{(j)}, \boldsymbol{\varphi}^{(j)}, \boldsymbol{\delta}))$$

Inverse of Prior Covariance

• Information entropy $H(q(\theta, \varphi, \delta)) = \frac{1}{2} N_{\theta} \ln(2\pi) - \frac{1}{2} \ln \det[\hat{Q}(\theta, \varphi, \delta) + Q_{\pi}(\theta)]$

Fisher Information Matrix

$$\hat{Q}(\theta, \boldsymbol{\varphi}, \boldsymbol{\delta}) = \nabla_{\theta} q^{T}(\theta; \boldsymbol{\varphi}, \boldsymbol{\delta}) \Sigma^{-1}(\boldsymbol{\sigma}) \nabla_{\theta}^{T} q(\theta; \boldsymbol{\varphi}, \boldsymbol{\delta})$$

Optimization (Multiple local/global optima)

n

- CMA-ES
- Forward Sequential Sensor Placement (FSSP)
- Backward Sequential Sensor Placement (BSSP)

Papadimitriou 2005 Papadimitriou & Papadimitriou, International Journal for Uncertainty Quantification, 2015 Argyris, Ph.D. Thesis, University of Thessaly, 2017

Effect of Spatial Correlation

Optimal placement of two (2) sensors on simply supported beam (Length 1m) Only the third mode contributes (Characteristic length ~0.3 m)

Uncorrelated – Length 0.0

For spatially correlated prediction error model, the optimal location of a new sensor is sufficiently away from the locations of existing sensors. Spatial correlation avoids sensor clustering.

Papadimitriou, Lombaert, Mechanical Systems and Signal Processing, 28, 105-127, 2012

Effect of Spatial Correlation

Optimal placement of two (2) sensors on simply supported beam (Length 1m) Only the third mode contributes (Characteristic length \sim 0.3 m)

Correlated – Length 0.1

For spatially correlated prediction error model, the optimal location of a new sensor is sufficiently away from the locations of existing sensors. Spatial correlation avoids sensor clustering.

Effect of Spatial Correlation on Information Gain

Papadimitriou & Lombaert, MSSP 2012

Demonstration: Metsovo Bridge

- Total length: 537m
- Deck width: 14m
- M1 height: 45m tall
- M2 height:110m tall
- M3 height: 35m tall
- Central span length: 235m

Monitoring Equipment

Sensor Locations

Optimization for the transverse modes. d in [0 1]

Optimization for the vertical modes. d in [1 2]

- Optimization with continuous design variables
- Implementation: Map continuous design domain in the bridge on a parent domain
- d in [0 2] cover the entire length for both type of sensors

Finite Element Model

FE size < 0.4m

Metsovo Bridge: Optimal Sensor Placement

Optimal Information Entropy vs Number of Sensors

- Uncorrelated prediction error: Information is gained as new sensors are added
- Correlated prediction error: Information gain reduces as number of sensors increases.
- Sequential sensor placement strategy is very accurate

Argyris & Papadimitriou, J. of Smart Cities 2017

Optimization: Local/Global Optima

Optimal Sensor Placement for Crack Identification

Sensor Configurations

ANSYS FE Model of a Plate with Crack

Upward distributed load

Variation of strain field (y-direction) around the crack

The model has about 6000 DOFs and is parametrized by the crack location, length and angle

Utility and Optimal Designs

Selected optimal grids for 36 and 81 sensors

Effectiveness of Optimal Sensor Placement

50mm crack full grid identification

Effectiveness of Optimal Sensor Placement

100mm crack full grid identification

Bayesian OED for Response Predictions

OBJECTIVES:

- Response reconstruction (e.g. accelerations, displacements, strains & stresses)

- Fatigue estimation at hotspot locations using limited number of sensors

APPROACH: Integrate/Combine

1. Validated FE models

2a. Modal Expansion Tehcnique 2b. Bayesian filtering for input-state-parameter estimation

SIGNIFICANCE: DIAGNOSIS - PROGNOSIS

- Prediction of remaining fatigue lifetime;
- Decision making for cost-effective inspection, maintenance, repair

EXACT FORMULATION FOR LINEAR SYSTEMS

Posterior PDF: $z \mid D \sim N(\hat{z}, P_z(\delta, \varphi))$

$$-U(\delta) = \frac{1}{2} \int_{\Phi} \left[\ln \det P^{z}(\delta, \varphi) \right] \frac{\operatorname{Prior}}{\pi(\varphi)} d\varphi + b$$

Posterior covariance
parameters

Papadimitriou, IMAC 2019

OSP for Predictions Using Modal Expansion

Modal Expansion

$$y = \Phi(\delta, \varphi) \xi + e, \qquad e \sim N(0, Q_e)$$

Prediction Equation (for response reconstruction)

$$z = \Psi(\varphi) \ \xi + \varepsilon, \qquad \qquad \varepsilon \sim N(0, Q_{\varepsilon})$$

Given observations, use **Bayesian inference** to estimate modal coordinates and then propagate for making predictions.

Predictions of unmeasured Qol follow a Normal Distribution.

$$z \mid D \sim N(\hat{z}, P_z(\boldsymbol{\delta}, \boldsymbol{\varphi}))$$

Covariance is independent of the measurements

$$P_{z}(\boldsymbol{\delta},\boldsymbol{\varphi}) = \Psi(\boldsymbol{\varphi}) \left[\Phi^{T}(\boldsymbol{\delta},\boldsymbol{\varphi}) Q_{e}^{-1}(\boldsymbol{\delta},\boldsymbol{\varphi}) \Phi(\boldsymbol{\delta},\boldsymbol{\varphi}) + S^{-1} \right]^{-1} \Psi^{T}(\boldsymbol{\varphi}) + Q_{\varepsilon}(\boldsymbol{\varphi})$$

Prior covariance

Number of sensors

FSSP **Best Sensor Location** prediction: all dof acceleration measurement 20 without unc 18 \diamond 16 \diamond Sensor location 8 01 15 8 \diamond 6 4 2 0 0 2 6 8 20 4 10 12 14 16 18 Number of sensors

<u>Method:</u> Modal expansion <u>Modes:</u> 7 <u>Prediction:</u> Accelerations <u>Prediction DOF:</u> 1:20 <u>Q e=Q ε:</u> large

Robust DesignMethod: Modal expansionUncertain degree of fixityModes: 5Prediction: AccelerationsPrediction DOF: 1:20Q e=Q ε: small

OSP for Joint Input-State Estimation (Steady-State)

Bayesian Filtering Techniques

- Lourens, Reynders, De Roeck, Degrande, Lombaert, MSSP, 2012
- Lourens, Papadimitriou, Gillijns, Reynders, De Roeck, Lombaert, MSSP, 2012
- Eftekhar Azam, Papadimitriou, Chatzi, MSSP, 2015
- Naets, Cuadrado, Desmet, 2015
- Maes, Smyth, De Roeck, Lombeert, MSSP, 2016, 2019
- Eftekhar Azam, Chatzi, Papadimitriou, Smyth, J. Vibration & Control, 2017
- Sedehi, Papadimitriou, Teymouri, Katafygiotis, MSSP, 2019

Given observations, use filtering techniques to estimate the input and the state and then propagate for making predictions

Predictions of Qol follow a Normal Distribution

Covariance is independent of the measurements

 $\underline{z_k} \mid D \sim N(\underline{\hat{z}_k}, P^z(\underline{\delta}, \underline{\varphi}))$

Posterior PDF

Method: Seq Bayesian FilterModes: 5Prediction: AccelerationsPrediction DOF: 2, 8, 11Q_e=Q_ε: small

Validation of Optimal Sensor Placement

Concluding Remarks

- OED for parameter estimation can handle nonlinear structural dynamics models. Also can optimize the excitation characteristics (Metallidis, Verros, Natsiavas & Papadimitriou 2003)
- OED for response predictions can be used to design effective sensor arrays for reconstructing/monitoring stresses and fatigue damage accumulation at hotspot locations using output only vibration measurements.
- Sequential sensor placement technique is effective for solving the optimization problem and accounting for multiple local/global optima
- Optimization problem is best formulated in the continuous space
- Bayesian OED formulation is applicable to any system in engineering and applied sciences

Acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 764547.

Tulay Ercan, PhD student, University of Thessaly