Bayesian Optimal Experimental Design Framework for Data-Driven Uncertainty Quantification (UQ) in Dynamical Systems

Costas Papadimitriou
University of Thessaly, Greece

Acknowledgements:
This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 764547.
Bayesian Learning Framework for Data-Driven UQ

Bayesian Optimal Experimental Design

Applications in Structural Dynamics

Conclusions
Models in Structural Dynamics

\[\theta \in \mathbb{R}^n \]

\[q(\theta | M) \]

Output Quantities of Interest (QoI)

\[\text{Parameters} \quad \rightarrow \quad \text{System & Computational Model Class} \quad \rightarrow \quad \text{Loads} \quad \rightarrow \quad \text{Predictions} \]
• Equations of motion in structural dynamics
 • Linear or nonlinear (elastic, plastic, sliding, impact, etc)
 • Loads known or unknown

• PARAMETERS
 • Stiffness, restoring force models, mass, boundary conditions, damping, friction)
 • Spectral characteristics of unknown loads
Real System Observations

- Accelerations
- Strains
- Displacements
- ...

Data-Driven Modeling and UQ

Parameters
\[\theta \in \mathbb{R}^n \]

System & Computational Model Class
\[M \]

Loads

Output Quantities of Interest (QoI)
\[q(\theta | M) \]

Predictions
Optimal Experimental Design is used to select the “best” experimental setup out of many alternative ones.

“Best” is the one that yields most informative measurements for
- Selecting models and inferring model parameters
- Estimating output QoI (e.g. response reconstruction, stresses)

Design Variables
- Type, location and number (density) of sensors and/or actuators
- Excitation characteristics (e.g. frequency content, amplitude)
Bayesian Learning Framework for Data-Driven UQ

A. PARAMETER ESTIMATION

\[
p(\theta \mid y) = \frac{p(y \mid \theta) \pi(\theta)}{p(y)} \quad \text{Evidence}
\]

Posterior \hspace{1cm} Likelihood \hspace{1cm} Prior

Prediction Error Model

\[y = q(\theta) + e\]
\[e = e^e + e^m \sim N(0, \Sigma)\]

Likelihood

\[
p(y \mid \theta) = \frac{|\Sigma(\theta)|^{-1/2}}{(2\pi)^n} \exp \left[-\frac{1}{2} [y - q(\theta)]^T \Sigma^{-1}(\theta) [y - q(\theta)] \right]
\]

B. PREDICTIONS

\[
p(z \mid y) = \int p(z \mid \theta) p(\theta \mid y) \, d\theta
\]
A. PARAMETER ESTIMATION

Prediction Error Model

\[y = q(\theta) + e \]

\[e = e^e + e^m \sim N(0, \Sigma) \]

Likelihood

\[
p(y \mid \theta) = \frac{|\Sigma(\theta)|^{-1/2}}{(2\pi)^n} \exp \left[-\frac{1}{2} [y - q(\theta)]^T \Sigma^{-1}(\theta) [y - q(\theta)] \right]
\]

B. PREDICTIONS

\[
p(z \mid y) = \int p(z \mid \theta) \, p(\theta \mid y) \, d\theta
\]
Bayesian Learning Framework for Data-Driven UQ

A. PARAMETER ESTIMATION

Posterior

\[p(\theta \mid y) = \frac{p(y \mid \theta) \pi(\theta)}{p(y)} \]

Likelihood

\[p(y \mid \theta) = \frac{|\Sigma(\theta)|^{-1/2}}{\sqrt{(2\pi)^n}} \exp \left[-\frac{1}{2} (y - q(\theta))^T \Sigma^{-1}(\theta) (y - q(\theta)) \right] \]

Prior

\[p(y) = \int p(z \mid \theta) p(\theta \mid y) \, d\theta \]

Prediction Error Model

\[y = q(\theta) + e \]
\[e = e^e + e^m \sim N(0, \Sigma) \]

B. PREDICTIONS

Information gain from data

Data set A
A. PARAMETER ESTIMATION

Posterior

\[p(\theta \mid y) = \frac{\text{Likelihood} \cdot \text{Prior}}{p(y)} \]

Prediction Error Model

\[y = q(\theta) + e \]

\[e = e^e + e^n \sim N(0, \Sigma) \]

Likelihood

\[p(y \mid \theta) = \frac{|\Sigma(\theta)|^{-1/2}}{(2\pi)^n} \exp \left[-\frac{1}{2} [y - q(\theta)]^T \Sigma^{-1}(\theta) [y - q(\theta)] \right] \]

B. PREDICTIONS

\[p(z \mid y) = \int p(z \mid \theta) p(\theta \mid y) \, d\theta \]
A. PARAMETER ESTIMATION

Posterior

\[p(\theta \mid y) = \frac{\text{Likelihood \times Prior}}{\text{Evidence}} \]

Likelihood

\[p(y \mid \theta) = \frac{1}{(2\pi)^{n/2} |\Sigma(\theta)|^{1/2}} \exp \left[-\frac{1}{2} \left(y - q(\theta) \right)^T \Sigma^{-1}(\theta) \left(y - q(\theta) \right) \right] \]

B. PREDICTIONS

\[p(z \mid y) = \int p(z \mid \theta) p(\theta \mid y) \, d\theta \]
Bayesian Optimal Experimental Design (OED)

• **Bayesian Learning**: Formulate posterior PDF of model parameters and/or posterior PDF of QoI given the data

• The **Kullback-Leibler Divergence (KL-div)**, a scalar measure of the “distance” between the posterior and prior, is used to represent the information gain due to data.

• The objective of the experiment is to maximize the KL-div with respect to the design variables of the experiment.

\[U_y(\delta, y, \varphi) = \int_\Theta p(\theta \mid y, \delta, \varphi) \ln \left[\frac{p(\theta \mid y, \delta, \varphi)}{p(\theta)} \right] d\theta \]
Bayesian Optimal Experimental Design (OED)

- **Bayesian Learning**: Formulate posterior PDF of model parameters and/or posterior PDF of QoI given the data.
- The Kullback-Leibler Divergence (KL-div), a scalar measure of the “distance” between the posterior and prior, is used to represent the information gain due to data.
- The objective of the experiment is to maximize the KL-div with respect to the design variables of the experiment.
- Need the data in order to compute KL-div. Data are not available before the experiment.
- Average the KL-div over all possible data, based on the likelihood & prior PDF of the model.

- **Expected KL-div**

\[
U(\delta, \varphi) = \int \int \int p(\theta | y, \delta, \varphi) \ln \left(\frac{p(\theta | y, \delta, \varphi)}{p(\theta)} \right) d\theta \ p(y | \delta) dy
\]

\[
y = q(\theta | M) + e
\]

\[
e \sim N(0, \Sigma)
\]
Bayesian Optimal Experimental Design (OED)

• **Bayesian Learning**: Formulate posterior PDF of model parameters and/or posterior PDF of QoI given the data.

• The Kullback-Leibler Divergence (KL-div), a scalar measure of the “distance” between the posterior and prior, is used to represent the information gain due to data.

• The objective of the experiment is to maximize the KL-div with respect to the design variables of the experiment.

• Need the data in order to compute KL-div. Data are not available before the experiment.

• Average the KL-div over all possible data, based on the likelihood & prior PDF of the model.

• **Expected KL-div**

\[
U(\delta, \varphi) = \int \int p(\theta | y, \delta, \varphi) \ln \left(\frac{p(\theta | y, \delta, \varphi)}{p(\theta)} \right) d\theta \ p(y | \delta) \ dy
\]

• **Computation of Multi-Dimensional Integrals**
 - Sampling algorithms (nested sampling)

 Huan & Marzouk, J. of Computational Physics, 2013

• Asymptotic approximation
Asymptotic Approximation

- REFORMULATE utility as a function of the design variables:

\[-U(\delta, \varphi) \sim \int_{\Theta} H(\theta, \varphi, \delta) \pi(\theta) \, d\theta\]

- Asymptotic approximation
 - Large number of data \(\sim\) Normal posterior distribution
 - Small prediction error \(\sim\) Laplace type approximation of integral on \(Y\)

- Integration
 - Sparse grid
 - Monte Carlo (use same samples for different values of the design variables)

- Expected posterior entropy

\[\overline{H}(\theta, \varphi, \delta) = \int H(y, \varphi, \delta) p(y \mid \theta, \varphi, \delta) \, dy\]

- Posterior entropy averaged over data for specific parameters

\[H(y, \varphi, \delta) = -\int_{\Theta} p(\theta \mid y, \varphi, \delta) \ln p(\theta \mid y, \varphi, \delta) \, d\theta\]

- Posterior entropy for specific data set

\[\text{Posterior entropy for specific data set}\]

\[\text{Expected posterior entropy}\]

\[\text{Posterior entropy averaged over data for specific parameters}\]
Asymptotic Approximation

\[-U(\boldsymbol{\delta}, \varphi) \approx \sum_{j=1}^{n} w_j \, H(q(\theta^{(j)}, \varphi, \delta))\]

- Information entropy

\[H(q(\theta, \varphi, \delta)) = \frac{1}{2} N_{\theta} \ln(2\pi) - \frac{1}{2} \ln \det[\hat{Q}(\theta, \varphi, \delta) + Q_{\pi}(\theta)]\]

- Result is same as one in [Papadimitriou, Beck & Au 2000], based on the concept of robust information entropy for optimal experimental design

In the context of optimal experimental design, the information entropy is an important measure. The formula given above captures the essence of this concept, where \(\hat{Q}(\theta, \varphi, \delta)\) represents the Fisher information matrix and the inverse of the prior covariance is also highlighted.

References:
- Argyris, Ph.D. Thesis, University of Thessaly, 2017
Asymptotic Approximation

\[-U(\delta, \varphi) \approx \sum_{j=1}^{n} w_j \ H(q(\theta^{(j)}, \varphi, \delta))\]

• Information entropy

\[H(q(\theta, \varphi, \delta)) = \frac{1}{2} N_\theta \ln(2\pi) - \frac{1}{2} \ln \det[\hat{Q}(\theta, \varphi, \delta) + Q_\pi(\theta)]\]

Fisher Information Matrix

\[\hat{Q}(\theta, \varphi, \delta) = \nabla_\theta q^T(\theta; \varphi, \delta) \Sigma^{-1}(\sigma) \nabla_\theta^T q(\theta; \varphi, \delta)\]

• Result is same as one in [Papadimitriou, Beck & Au 2000], based on the concept of robust information entropy for optimal experimental design

Argyris, Ph.D. Thesis, University of Thessaly, 2017

• Spatial correlation avoids sensor clustering

\[\Sigma_{ij} = \sigma_1^2 \delta_{ij} + \sigma_2^2 q_i q_j R(\Delta_{ij})\]

\[R(\Delta_{ij}) = \exp \left[-\frac{|x_i - x_j|}{\lambda} \right]\]

Robust Bayesian OED

- Bayesian Learning: Formulate posterior PDF of model parameters and/or posterior PDF of QoI given the data.
- The Kullback-Leibler Divergence (KL-div), a scalar measure of the “distance” between the posterior and prior, is used to represent the information gain due to data.
- The objective of the experiment is to maximize the KL-div with respect to the design variables of the experiment.
- Need the data in order to compute KL-div. Data are not available before the experiment.
- Average the KL-div over all possible data, based on the likelihood & prior PDF of the model.

- Robust measure of Expected KL-div:

\[
U(\delta) = \int \int \int_{\Phi Y Z} p(\theta | y, \delta, \varphi) \ln \left[\frac{p(\theta | y, \delta, \varphi)}{p(\theta)} \right] d\theta \ p(y | \delta) \ dy \ \pi(\varphi) \ d\varphi
\]
Asymptotic Approximation

\[-U(\delta) \approx \sum_{j=1}^{n} w_j H(q(\theta^{(j)}, \varphi^{(j)}, \delta)) \]

• Information entropy

\[H(q(\theta, \varphi, \delta)) = \frac{1}{2} N_{\theta} \ln(2\pi) - \frac{1}{2} \ln \det[\hat{Q}(\theta, \varphi, \delta) + Q_{\pi}(\theta)] \]

Fisher Information Matrix

\[\hat{Q}(\theta, \varphi, \delta) = \nabla_{\theta} q^T (\theta; \varphi, \delta) \Sigma^{-1}(\sigma) \nabla^T_{\theta} q(\theta; \varphi, \delta) \]

• Optimization (Multiple local/global optima)
 • CMA-ES
 • Forward Sequential Sensor Placement (FSSP)
 • Backward Sequential Sensor Placement (BSSP)

Papadimitriou 2005
Argyris, Ph.D. Thesis, University of Thessaly, 2017
Effect of Spatial Correlation

Optimal placement of two (2) sensors on simply supported beam (Length 1m)
Only the third mode contributes (Characteristic length ~0.3 m)

Uncorrelated – Length 0.0

Spatially uncorrelated prediction error results in sensor clustering

For spatially correlated prediction error model, the optimal location of a new sensor is sufficiently away from the locations of existing sensors. Spatial correlation avoids sensor clustering.

Optimal placement of two (2) sensors on simply supported beam (Length 1m)
Only the third mode contributes (Characteristic length ~0.3 m)

Spatially uncorrelated prediction error results in sensor clustering

Spatially correlated prediction error avoids sensor clustering

For spatially correlated prediction error model, the optimal location of a new sensor is sufficiently away from the locations of existing sensors. Spatial correlation avoids sensor clustering.

Effect of Spatial Correlation on Information Gain

5-parameters
3 contributing modes: Characteristic length is $7h$

Design for impulse excitation at top mass

20 - DOF Spring-Mass Model

Uncorrelated

Correlated: Length=h

Papadimitriou & Lombaert, MSSP 2012
Demonstration: Metsovo Bridge

R/C BRIDGE
- Total length: 537m
- Deck width: 14m
- M1 height: 45m tall
- **M2 height:** 110m tall
- M3 height: 35m tall
- Central span length: 235m

Monitoring Equipment
Sensor Locations

- Optimization with continuous design variables
- Implementation: Map continuous design domain in the bridge on a parent domain
- d in $[0\ 2]$ cover the entire length for both types of sensors

Finite Element Model

Tetrahedral Quadratic Lagrange Finite Elements

FINITE ELEMENT mesh:
Largest FE size is limited by box cross-section thickness.
FE size < 0.4m

Argyris, Ph.D. Thesis, UTH, 2017
Metsovo Bridge: Optimal Sensor Placement

Up = uncorrelated error, Down = exponentially correlated error with $\lambda=10m$

Argyris & Papadimitriou, J. of Smart Cities 2017
• **Uncorrelated** prediction error: Information is gained as new sensors are added.

• **Correlated** prediction error: Information gain reduces as number of sensors increases.

• **Sequential sensor placement strategy** is very accurate.

Argyris & Papadimitriou, J. of Smart Cities 2017
Optimization: Local/Global Optima

Argyris & Papadimitriou, J. of Smart Cities 2017
Optimal Sensor Placement for Crack Identification

Argyris, Choudhury, Zabel & Papadimitriou, Structural Control and Health Monitoring, 2018
Sensor Configurations

Argyris, Choudhury, Zabel & Papadimitriou, Structural Control and Health Monitoring, 2018
Upward distributed load

Variation of strain field (y-direction) around the crack

The model has about 6000 DOFs and is parametrized by the crack location, length and angle

Argyris, Choudhury, Zabel & Papadimitriou, Structural Control and Health Monitoring, 2018
Utility and Optimal Designs

Selected optimal grids for 36 and 81 sensors

Utility as a function of the number of sensors

Utility and Optimal Designs
Argyris, Choudhury, Zabel & Papadimitriou, Structural Control and Health Monitoring, 2018
Effectiveness of Optimal Sensor Placement

50mm crack full grid identification

Argyris, Choudhury, Zabel & Papadimitriou, Structural Control and Health Monitoring, 2018
Effectiveness of Optimal Sensor Placement

100mm crack full grid identification

Argyris, Choudhury, Zabel & Papadimitriou, Structural Control and Health Monitoring, 2018
Bayesian OED for Response Predictions

OBJECTIVES:
- Response reconstruction (e.g. accelerations, displacements, strains & stresses)
- Fatigue estimation at hotspot locations using limited number of sensors

APPROACH: Integrate/Combine
1. Validated FE models
2a. Modal Expansion Technique
2b. Bayesian filtering for input-state-parameter estimation

SIGNIFICANCE: DIAGNOSIS - PROGNOSIS
- Prediction of remaining fatigue lifetime;
- Decision making for cost-effective inspection, maintenance, repair

EXACT FORMULATION FOR LINEAR SYSTEMS

Posterior PDF: \[z \mid D \sim N(\hat{z}, P_z(\delta, \varphi)) \]

\[-U(\delta) = \frac{1}{2} \int_\Phi \ln \det P^z(\delta, \varphi) \pi(\varphi) \, d\varphi + b\]

Papadimitriou, IMAC 2019
Modal Expansion

\[y = \Phi(\delta, \varphi) \xi + e, \quad e \sim N(0, Q_e) \]

Prediction Equation (for response reconstruction)

\[z = \Psi(\varphi) \xi + \epsilon, \quad \epsilon \sim N(0, Q_\epsilon) \]

Given observations, use **Bayesian inference** to estimate modal coordinates and then propagate for making predictions.

Predictions of unmeasured QoI follow a **Normal Distribution**.

\[z \mid D \sim N(\hat{z}, P_z(\delta, \varphi)) \]

Covariance is independent of the measurements

\[P_z(\delta, \varphi) = \Psi(\varphi) \left[\Phi^T(\delta, \varphi) Q_e^{-1}(\delta, \varphi) \Phi(\delta, \varphi) + S^{-1} \right]^{-1} \Psi^T(\varphi) + Q_\epsilon(\varphi) \]

Prior covariance
Example: 20-DOF Spring-Mass Chain Model

Method: Modal expansion

Modes: 1

Prediction: Accelerations

Prediction DOF: 2, 8, 11

Q_e = Q_ε: very small
Example: 20-DOF Spring-Mass Chain Model

Method: Modal expansion
Modes: 7
Prediction: Accelerations
Prediction DOF: 1:20
Q_e=Q_ε: very small
Example: 20-DOF Spring-Mass Chain Model
Example: 20-DOF Spring-Mass Chain Model

Method: Modal expansion
Modes: 7
Prediction: Accelerations
Prediction DOF: 1:20
$Q_e=Q_\varepsilon$: large
Example: 20-DOF Spring-Mass Chain Model

FSSP
Minimum and Maximum Expected Utility
prediction: all dof acceleration measurement

BSSP
Minimum and Maximum Expected Utility
prediction: all dof acceleration measurement

FSSP
Best Sensor Location
prediction: all dof acceleration measurement

BSSP
Best Sensor Location
prediction: all dof acceleration measurement
Example: 20-DOF Spring-Mass Chain Model

Robust Design
Uncertain degree of fixity

Method: Modal expansion
Modes: 5
Prediction: Accelerations
Prediction DOF: 1:20
$Q_e = Q_\varepsilon$: small

![Diagram of 20-DOF Spring-Mass Chain Model]
Example: 20-DOF Spring-Mass Chain Model
OSP for Joint Input-State Estimation (Steady-State)

Bayesian Filtering Techniques
- Lourens, Reynders, De Roeck, Degrande, Lombaert, MSSP, 2012
- Lourens, Papadimitriou, Gillijns, Reynders, De Roeck, Lombaert, MSSP, 2012
- Eftekhar Azam, Papadimitriou, Chatzi, MSSP, 2015
- Naets, Cuadrado, Desmet, 2015
- Maes, Smyth, De Roeck, Lombaert, MSSP, 2016, 2019
- Eftekhar Azam, Chatzi, Papadimitriou, Smyth, J. Vibration & Control, 2017
- Sedehi, Papadimitriou, Teymouri, Katayfgiotis, MSSP, 2019

Given observations, use filtering techniques to estimate the input and the state and then propagate for making predictions

Predictions of QoI follow a Normal Distribution

Covariance is independent of the measurements

\[\mathbf{z}_k \mid D \sim N(\mathbf{\hat{z}}_k, P^z(\mathbf{\hat{z}}, \varphi)) \]

Posterior PDF
Example: 20-DOF Spring-Mass Chain Model

Method: Seq Bayesian Filter

Modes: 5

Prediction: Accelerations

Prediction DOF: 2, 8, 11

Q_e=Q_є: small

![Diagram of a 20-DOF Spring-Mass Chain Model]

- m_1
- m_2
- m_19
- m_20
- k_1
- k_2
- k_19
- k_20
Example: 20-DOF Spring-Mass Chain Model
Validation of Optimal Sensor Placement

Optimal Locations of 7 Sensors

Worst Locations of 7 Sensors
Concluding Remarks

• OED for parameter estimation can handle nonlinear structural dynamics models. Also can optimize the excitation characteristics (Metallidis, Verros, Natsiavas & Papadimitriou 2003)

• OED for response predictions can be used to design effective sensor arrays for reconstructing/monitoring stresses and fatigue damage accumulation at hot-spot locations using output only vibration measurements.

• Sequential sensor placement technique is effective for solving the optimization problem and accounting for multiple local/global optima

• Optimization problem is best formulated in the continuous space

• Bayesian OED formulation is applicable to any system in engineering and applied sciences
Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 764547.

Tulay Ercan, PhD student, University of Thessaly